Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38584490

RESUMO

The mechanical forces experienced during movement and the time constants of muscle activation are important determinants of the durations of behaviours, which may both be affected by size-dependent scaling. The mechanics of slow movements in small animals are dominated by elastic forces and are thus quasistatic (i.e. always near mechanical equilibrium). Muscular forces producing movement and elastic forces resisting movement should scale identically (proportional to mass2/3), leaving the scaling of the time constant of muscle activation to play a critical role in determining behavioural duration. We tested this hypothesis by measuring the duration of feeding behaviours in the marine mollusc Aplysia californica whose body sizes spanned three orders of magnitude. The duration of muscle activation was determined by measuring the time it took for muscles to produce maximum force as A. californica attempted to feed on tethered inedible seaweed, which provided an in vivo approximation of an isometric contraction. The timing of muscle activation scaled with mass0.3. The total duration of biting behaviours scaled identically, with mass0.3, indicating a lack of additional mechanical effects. The duration of swallowing behaviour, however, exhibited a shallower scaling of mass0.17. We suggest that this was due to the allometric growth of the anterior retractor muscle during development, as measured by micro-computed tomography (micro-CT) scans of buccal masses. Consequently, larger A. californica did not need to activate their muscles as fully to produce equivalent forces. These results indicate that muscle activation may be an important determinant of the scaling of behavioural durations in quasistatic systems.


Assuntos
Aplysia , Músculos , Animais , Aplysia/fisiologia , Microtomografia por Raio-X , Músculos/fisiologia , Comportamento Alimentar/fisiologia , Deglutição/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-36208310

RESUMO

Crickets receive auditory information from their environment via ears located on the front legs. Ascending interneurons forward auditory activity to the brain, which houses a pattern recognition network for phonotaxis to conspecific calling songs and which controls negative phonotaxis to high-frequency sound pulses. Descending brain neurons, however, which are clearly involved in controlling these behaviors, have not yet been identified. We describe a descending auditory-responsive brain neuron with an arborization pattern that coincides with the ring-like auditory neuropil in the brain formed by the axonal arborizations of ascending and local interneurons, indicating its close link to auditory processing. Spiking activity of this interneuron occurs with a short latency to calling song patterns and the neuron copies the sound pulse pattern. The neuron preferentially responds to short sound pulses, but its activity appears to be independent of the calling song pattern recognition process. It also receives a weaker synaptic input in response to high-frequency pulses, which may contribute to its short latency spiking responses. This interneuron could be a crucial part in the auditory-to-motor transformation of the nervous system and contribute to the motor control of cricket auditory behavior.


Assuntos
Vias Auditivas , Gryllidae , Animais , Vias Auditivas/fisiologia , Gryllidae/fisiologia , Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Encéfalo/fisiologia , Estimulação Acústica
4.
Elife ; 112022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170144

RESUMO

Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20-30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.


Assuntos
Quirópteros , Ecolocação , Ortópteros , Animais , Audição , Comportamento Predatório
5.
Vitam Horm ; 113: 29-53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32138952

RESUMO

The origin of the oxytocin (OT)/vasopressin (VP) signaling system is thought to date back more than 600million years. OT/VP-like peptides have been identified in numerous invertebrate phyla including molluscs, annelids, nematodes and insects. However, to date we only have a limited understanding of the biological role(s) of this GPCR-mediated signaling system in insects. This chapter presents the current knowledge of OT/VP-like neuropeptide signaling in insects by providing a brief overview of insect OT/VP-like neuropeptides, their genetic and structural commonalities, and their experimentally tested and proposed functions. Despite their widespread occurrence across insect orders these peptides (and their endogenous receptors) appear to be absent in common insect model species, such as flies and bees. We therefore explain the known functionalities of this signaling system in three different insect model systems: beetles, locusts, and ants. Additionally, we review the phylogenetic distribution of the OT/VP signaling system in arthropods as obtained from extensive genome/transcriptome mining. Finally, we discuss the unique challenges in the development of selective OT/VP ligands for human receptors and share our perspective on the possible application of insect- and other non-mammalian-derived OT/VP-like peptide ligands in pharmacology.


Assuntos
Ocitocina/fisiologia , Transdução de Sinais/fisiologia , Vasopressinas/fisiologia , Animais , Insetos , Neuropeptídeos
6.
J Exp Biol ; 219(Pt 5): 635-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936638

RESUMO

The desert locust, Schistocerca gregaria, shows a strong phenotypic plasticity. It can develop, depending upon population density, into either a solitarious or gregarious phase that differs in many aspects of behaviour, physiology and morphology. Prominent amongst these differences is that solitarious locusts have proportionately longer hind femora than gregarious locusts. The hind femora contain the muscles and energy-storing cuticular structures that propel powerful jumps using a catapult-like mechanism. We show that solitarious locusts jump on average 23% faster and 27% further than gregarious locusts, and attribute this improved performance to three sources: first, a 17.5% increase in the relative volume of their hind femur, and hence muscle volume; second, a 24.3% decrease in the stiffness of the energy-storing semi-lunar processes of the distal femur; and third, a 4.5% decrease in the stiffness of the tendon of the extensor tibiae muscle. These differences mean that solitarious locusts can generate more power and store more energy in preparation for a jump than can gregarious locusts. This improved performance comes at a cost: solitarious locusts expend nearly twice the energy of gregarious locusts during a single jump and the muscular co-contraction that energises the cuticular springs takes twice as long. There is thus a trade-off between achieving maximum jump velocity in the solitarious phase against the ability to engage jumping rapidly and repeatedly in the gregarious phase.


Assuntos
Gafanhotos/anatomia & histologia , Gafanhotos/fisiologia , Animais , Extremidades/anatomia & histologia , Feminino , Locomoção/fisiologia , Masculino , Músculos/anatomia & histologia , Músculos/fisiologia , Fenótipo , Densidade Demográfica
7.
Proc Biol Sci ; 282(1800): 20142062, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25520357

RESUMO

Serotonin is a neurochemical with evolutionarily conserved roles in orchestrating nervous system function and behavioural plasticity. A dramatic example is the rapid transformation of desert locusts from cryptic asocial animals into gregarious crop pests that occurs when drought forces them to accumulate on dwindling resources, triggering a profound alteration of behaviour within just a few hours. The onset of crowding induces a surge in serotonin within their thoracic ganglia that is sufficient and necessary to induce the switch from solitarious to gregarious behaviour. To identify the neurons responsible, we have analysed how acute exposure to three gregarizing stimuli--crowding, touching the hind legs or seeing and smelling other locusts--and prolonged group living affect the expression of serotonin in individual neurons in the thoracic ganglia. Quantitative analysis of cell body immunofluorescence revealed three classes of neurons with distinct expressional responses. All ganglia contained neurons that responded to multiple gregarizing stimuli with increased expression. A second class showed increased expression only in response to intense visual and olfactory stimuli from conspecifics. Prolonged group living affected a third and entirely different set of neurons, revealing a two-tiered role of the serotonergic system as both initiator and substrate of socially induced plasticity. This demonstrates the critical importance of ontogenetic time for understanding the function of serotonin in the reorganization of behaviour.


Assuntos
Gafanhotos/fisiologia , Neurônios Serotoninérgicos/metabolismo , Animais , Comportamento Animal , Aglomeração , Gafanhotos/metabolismo , Odorantes , Serotonina/metabolismo , Comportamento Social , Meio Social , Fatores de Tempo , Tato
8.
Curr Biol ; 24(21): R1031-3, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25517363

RESUMO

In this quick guide, Rogers and Simpson provide an overview of thanatosis, the fascinating behaviour of feigning death, seen in animals ranging from insects to mammals.


Assuntos
Resposta de Imobilidade Tônica , Comportamento Predatório , Animais
9.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274362

RESUMO

Locusts display a striking form of phenotypic plasticity, developing into either a lone-living solitarious phase or a swarming gregarious phase depending on population density. The two phases differ extensively in appearance, behaviour and physiology. We found that solitarious and gregarious locusts have clear differences in their hearing, both in their tympanal and neuronal responses. We identified significant differences in the shape of the tympana that may be responsible for the variations in hearing between locust phases. We measured the nanometre mechanical responses of the ear's tympanal membrane to sound, finding that solitarious animals exhibit greater displacement. Finally, neural experiments signified that solitarious locusts have a relatively stronger response to high frequencies. The enhanced response to high-frequency sounds in the nocturnally flying solitarious locusts suggests greater investment in detecting the ultrasonic echolocation calls of bats, to which they are more vulnerable than diurnally active gregarious locusts. This study highlights the importance of epigenetic effects set forth during development and begins to identify how animals are equipped to match their immediate environmental needs.


Assuntos
Percepção Auditiva , Epigênese Genética , Gafanhotos/fisiologia , Animais , Nervo Coclear/fisiologia , Orelha Média/anatomia & histologia , Orelha Média/fisiologia , Feminino , Gafanhotos/anatomia & histologia , Gafanhotos/genética , Masculino , Densidade Demográfica , Comportamento Social
10.
J Insect Physiol ; 65: 9-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24768842

RESUMO

Desert Locusts can change reversibly between solitarious and gregarious phases, which differ considerably in behaviour, morphology and physiology. The two phases show many behavioural differences including both overall levels of activity and the degree to which they are attracted or repulsed by conspecifics. Solitarious locusts perform infrequent bouts of locomotion characterised by a slow walking pace, groom infrequently and actively avoid other locusts. Gregarious locusts are highly active with a rapid walking pace, groom frequently and are attracted to conspecifics forming cohesive migratory bands as nymphs and/or flying swarms as adults. The sole factor driving the onset of gregarization is the presence of conspecifics. In several previous studies concerned with the mechanism underlying this transformation we have used an aggregate measure of behavioural phase state, Pgreg, derived from logistic regression analysis, which combines and weights several behavioural variables to characterise solitarious and gregarious behaviour. Using this approach we have analysed the time course of behavioural change, the stimuli that induce gregarization and the key role of serotonin in mediating the transformation. Following a recent critique that suggested that using Pgreg may confound changes in general activity with genuine gregarization we have performed a meta-analysis examining the time course of change in the individual behaviours that we use to generate Pgreg. We show that the forced crowding of solitarious locusts, tactile stimulation of the hind femora, and the short-term application of serotonin each induce concerted changes in not only locomotion-related variables but also grooming frequency and attraction to other locusts towards those characteristic of long-term gregarious locusts. This extensive meta-analysis supports and extends our previous conclusions that solitarious locusts undergo a rapid behavioural gregarization upon receiving appropriate stimulation for a few hours that is mediated by serotonin, at the end of which their behaviour is largely indistinguishable from locusts that have been in the gregarious phase their entire lives.


Assuntos
Comportamento Animal/fisiologia , Gafanhotos/fisiologia , Serotonina/metabolismo , Comportamento Social , Animais , Aglomeração , Asseio Animal/fisiologia , Locomoção/fisiologia , Tato/fisiologia
11.
Proc Biol Sci ; 279(1743): 3697-705, 2012 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-22764161

RESUMO

Visually targeted reaching to a specific object is a demanding neuronal task requiring the translation of the location of the object from a two-dimensionsal set of retinotopic coordinates to a motor pattern that guides a limb to that point in three-dimensional space. This sensorimotor transformation has been intensively studied in mammals, but was not previously thought to occur in animals with smaller nervous systems such as insects. We studied horse-head grasshoppers (Orthoptera: Proscopididae) crossing gaps and found that visual inputs are sufficient for them to target their forelimbs to a foothold on the opposite side of the gap. High-speed video analysis showed that these reaches were targeted accurately and directly to footholds at different locations within the visual field through changes in forelimb trajectory and body position, and did not involve stereotyped searching movements. The proscopids estimated distant locations using peering to generate motion parallax, a monocular distance cue, but appeared to use binocular visual cues to estimate the distance of nearby footholds. Following occlusion of regions of binocular overlap, the proscopids resorted to peering to target reaches even to nearby locations. Monocular cues were sufficient for accurate targeting of the ipsilateral but not the contralateral forelimb. Thus, proscopids are capable not only of the sensorimotor transformations necessary for visually targeted reaching with their forelimbs but also of flexibly using different visual cues to target reaches.


Assuntos
Gafanhotos/fisiologia , Animais , Sinais (Psicologia) , Extremidades/fisiologia , Locomoção , Masculino , Fenômenos Fisiológicos do Sistema Nervoso , Desempenho Psicomotor , Visão Ocular
12.
Proc Natl Acad Sci U S A ; 109(7): E381-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22184243

RESUMO

The mechanisms that integrate genetic and environmental information to coordinate the expression of complex phenotypes are little understood. We investigated the role of two protein kinases (PKs) in the population density-dependent transition to gregarious behavior that underlies swarm formation in desert locusts: the foraging gene product, a cGMP-dependent PK (PKG) implicated in switching between alternative group-related behaviors in several animal species; and cAMP-dependent PK (PKA), a signal transduction protein with a preeminent role in different forms of learning. Solitarious locusts acquire key behavioral characters of the swarming gregarious phase within just 1 to 4 h of forced crowding. Injecting the PKA inhibitor KT5720 before crowding prevented this transition, whereas injecting KT5823, an inhibitor of PKG, did not. Neither drug altered the behavior of long-term gregarious locusts. RNAi against foraging effectively reduced its expression in the central nervous system, but this did not prevent gregarization upon crowding. By contrast, solitarious locusts with an RNAi-induced reduction in PKA catalytic subunit C1 expression behaved less gregariously after crowding, and RNAi against the inhibitory R1 subunit promoted more extensive gregarization following a brief crowding period. A central role of PKA is congruent with the recent discovery that serotonin mediates gregarization in locusts and with findings in vertebrates that similarly implicate PKA in the capacity to cope with adverse life events. Our results show that PKA has been coopted into effecting the wide-ranging transformation from solitarious to gregarious behavior, with PKA-mediated behavioral plasticity resulting in an environmentally driven reorganization of a complex phenotype.


Assuntos
Comportamento Animal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Gafanhotos/fisiologia , Animais , Carbazóis/farmacologia , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Interferência de RNA
13.
PLoS One ; 6(11): e28110, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22132225

RESUMO

Desert locusts (Schistocerca gregaria) show an extreme form of phenotypic plasticity and can transform between a cryptic solitarious phase and a swarming gregarious phase. The two phases differ extensively in behavior, morphology and physiology but very little is known about the molecular basis of these differences. We used our recently generated Expressed Sequence Tag (EST) database derived from S. gregaria central nervous system (CNS) to design oligonucleotide microarrays and compare the expression of thousands of genes in the CNS of long-term gregarious and solitarious adult desert locusts. This identified 214 differentially expressed genes, of which 40% have been annotated to date. These include genes encoding proteins that are associated with CNS development and modeling, sensory perception, stress response and resistance, and fundamental cellular processes. Our microarray analysis has identified genes whose altered expression may enable locusts of either phase to deal with the different challenges they face. Genes for heat shock proteins and proteins which confer protection from infection were upregulated in gregarious locusts, which may allow them to respond to acute physiological challenges. By contrast the longer-lived solitarious locusts appear to be more strongly protected from the slowly accumulating effects of ageing by an upregulation of genes related to anti-oxidant systems, detoxification and anabolic renewal. Gregarious locusts also had a greater abundance of transcripts for proteins involved in sensory processing and in nervous system development and plasticity. Gregarious locusts live in a more complex sensory environment than solitarious locusts and may require a greater turnover of proteins involved in sensory transduction, and possibly greater neuronal plasticity.


Assuntos
Clima Desértico , Gafanhotos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Comportamento Social , Transcriptoma/genética , Animais , Sequência de Bases , Respiração Celular/genética , Perfilação da Expressão Gênica , Modelos Biológicos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Sistema Nervoso/crescimento & desenvolvimento , Estresse Oxidativo/genética , Percepção , Biossíntese de Proteínas/genética , Alinhamento de Sequência , Estresse Fisiológico/genética , Fatores de Tempo
14.
Neural Syst Circuits ; 1(1): 11, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22330837

RESUMO

The environment has a central role in shaping developmental trajectories and determining the phenotype so that animals are adapted to the specific conditions they encounter. Epigenetic mechanisms can have many effects, with changes in the nervous and musculoskeletal systems occurring at different rates. How is the function of an animal maintained whilst these transitions happen? Phenotypic plasticity can change the ways in which animals respond to the environment and even how they sense it, particularly in the context of social interactions between members of their own species. In the present article, we review the mechanisms and consequences of phenotypic plasticity by drawing upon the desert locust as an unparalleled model system. Locusts change reversibly between solitarious and gregarious phases that differ dramatically in appearance, general physiology, brain function and structure, and behaviour. Solitarious locusts actively avoid contact with other locusts, but gregarious locusts may live in vast, migrating swarms dominated by competition for scarce resources and interactions with other locusts. Different phase traits change at different rates: some behaviours take just a few hours, colouration takes a lifetime and the muscles and skeleton take several generations. The behavioural demands of group living are reflected in gregarious locusts having substantially larger brains with increased space devoted to higher processing. Phase differences are also apparent in the functioning of identified neurons and circuits. The whole transformation process of phase change pivots on the initial and rapid behavioural decision of whether or not to join with other locusts. The resulting positive feedback loops from the presence or absence of other locusts drives the process to completion. Phase change is accompanied by dramatic changes in neurochemistry, but only serotonin shows a substantial increase during the critical one- to four-hour window during which gregarious behaviour is established. Blocking the action of serotonin or its synthesis prevents the establishment of gregarious behaviour. Applying serotonin or its agonists promotes the acquisition of gregarious behaviour even in a locust that has never encountered another locust. The analysis of phase change in locusts provides insights into a feedback circuit between the environment and epigenetic mechanisms and more generally into the neurobiology of social interaction.

15.
Proc Biol Sci ; 277(1697): 3087-96, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20507896

RESUMO

The behavioural demands of group living and foraging have been implicated in both evolutionary and plastic changes in brain size. Desert locusts show extreme phenotypic plasticity, allowing brain morphology to be related to very different lifestyles in one species. At low population densities, locusts occur in a solitarious phase that avoids other locusts and is cryptic in appearance and behaviour. Crowding triggers the transformation into the highly active gregarious phase, which aggregates into dense migratory swarms. We found that the brains of gregarious locusts have very different proportions and are also 30 per cent larger overall than in solitarious locusts. To address whether brain proportions change with size through nonlinear scaling (allometry), we conducted the first comprehensive major axis regression analysis of scaling relations in an insect brain. This revealed that phase differences in brain proportions arise from a combination of allometric effects and deviations from the allometric expectation (grade shifts). In consequence, gregarious locusts had a larger midbrainoptic lobe ratio, a larger central complex and a 50 per cent larger ratio of the olfactory primary calyx to the first olfactory neuropile. Solitarious locusts invest more in low-level sensory processing, having disproportionally larger primary visual and olfactory neuropiles, possibly to gain sensitivity. The larger brains of gregarious locusts prioritize higher integration, which may support the behavioural demands of generalist foraging and living in dense and highly mobile swarms dominated by intense intraspecific competition.


Assuntos
Comportamento Animal , Encéfalo/anatomia & histologia , Gafanhotos/anatomia & histologia , Animais , Tamanho Corporal , Gafanhotos/fisiologia , Masculino , Mesencéfalo/anatomia & histologia , Neurópilo , Tamanho do Órgão , Densidade Demográfica , Análise de Regressão , Olfato , Percepção Visual
16.
J Insect Physiol ; 56(8): 902-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20416321

RESUMO

Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects.


Assuntos
Comportamento Animal/fisiologia , Gafanhotos/fisiologia , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Reflexo/fisiologia , Animais , Fenômenos Biomecânicos , Eletrofisiologia , Extremidades/fisiologia , Feminino , Articulações/fisiologia , Locomoção/fisiologia , Masculino
17.
J Neurophysiol ; 103(2): 779-92, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19955292

RESUMO

Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120 degrees x 60 degrees in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes.


Assuntos
Comportamento Animal/fisiologia , Gafanhotos/fisiologia , Habituação Psicofisiológica/fisiologia , Neurônios Aferentes/fisiologia , Órgãos dos Sentidos/fisiologia , Comportamento Social , Campos Visuais/fisiologia , Animais , Feminino , Masculino
18.
Science ; 323(5914): 627-30, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19179529

RESUMO

Desert locusts, Schistocerca gregaria, show extreme phenotypic plasticity, transforming between a little-seen solitarious phase and the notorious swarming gregarious phase depending on population density. An essential tipping point in the process of swarm formation is the initial switch from strong mutual aversion in solitarious locusts to coherent group formation and greater activity in gregarious locusts. We show here that serotonin, an evolutionarily conserved mediator of neuronal plasticity, is responsible for this behavioral transformation, being both necessary if behavioral gregarization is to occur and sufficient to induce it. Our data demonstrate a neurochemical mechanism linking interactions between individuals to large-scale changes in population structure and the onset of mass migration.


Assuntos
Migração Animal , Comportamento Animal , Voo Animal , Gânglios dos Invertebrados/metabolismo , Gafanhotos/fisiologia , Serotonina/metabolismo , 5-Hidroxitriptofano/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Aglomeração , Gafanhotos/efeitos dos fármacos , Modelos Logísticos , Vias Neurais/fisiologia , Odorantes , Controle de Pragas , Estimulação Luminosa , Estimulação Física , Densidade Demográfica , Serotonina/biossíntese , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Comportamento Social
19.
J Neurosci ; 27(17): 4621-33, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460075

RESUMO

We characterized homeostatic plasticity at an identified sensory-motor synapse in an insect, which maintains constant levels of motor drive as locusts transform from their solitarious phase to their gregarious swarming phase. The same mechanism produces behaviorally relevant changes in response timing that can be understood in the context of an animal's altered behavioral state. For individual animals of either phase, different looming objects elicited different spiking responses in a visual looming detector interneuron, descending contralateral movement detector (DCMD), yet its synaptic drive to a leg motoneuron, fast extensor tibiae (FETi), always had the same maximum amplitude. Gregarious locust DCMDs produced more action potentials and had higher firing frequencies, but individual postsynaptic potentials (PSPs) elicited in FETi were half the amplitude of those in solitarious locusts. A model suggested that this alone could not explain the similarity in overall amplitude, and we show that facilitation increased the maximum compound PSP amplitude in gregarious animals. There was the same linear relationship between times of peak DCMD firing before collision and the size/velocity of looming objects in both phases. The DCMD-FETi synapse transformed this relationship nonlinearly, such that peak amplitudes of compound PSPs occurred disproportionately earlier for smaller/faster objects. Furthermore, the peak PSP amplitude occurred earlier in gregarious than in solitarious locusts, indicating a differential tuning. Homeostatic modulation of the amplitude, together with a nonlinear synaptic transformation of timing, acted together to tune the DCMD-FETi system so that swarming gregarious locusts respond earlier to small moving objects, such as conspecifics, than solitarious locusts.


Assuntos
Vias Eferentes/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia , Animais , Comportamento Animal/fisiologia , Vias Eferentes/citologia , Potenciais Evocados Visuais/fisiologia , Feminino , Gafanhotos , Habituação Psicofisiológica/fisiologia , Masculino , Dinâmica não Linear , Estimulação Luminosa , Tempo de Reação/fisiologia , Vias Visuais/citologia
20.
J Exp Biol ; 207(Pt 20): 3603-17, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15339956

RESUMO

Desert locusts (Schistocerca gregaria) can undergo a profound transformation between solitarious and gregarious forms, which involves widespread changes in behaviour, physiology and morphology. This phase change is triggered by the presence or absence of other locusts and occurs over a timescale ranging from hours, for some behaviours to change, to generations, for full morphological transformation. The neuro-hormonal mechanisms that drive and accompany phase change in either direction remain unknown. We have used high-performance liquid chromatography (HPLC) to compare amounts of 13 different potential neurotransmitters and/or neuromodulators in the central nervous systems of final instar locust nymphs undergoing phase transition and between long-term solitarious and gregarious adults. Long-term gregarious and solitarious locust nymphs differed in 11 of the 13 substances analysed: eight increased in both the brain and thoracic nerve cord (including glutamate, GABA, dopamine and serotonin), whereas three decreased (acetylcholine, tyramine and citrulline). Adult locusts of both extreme phases were similarly different. Isolating larval gregarious locusts led to rapid changes in seven chemicals equal to or even exceeding the differences seen between long-term solitarious and gregarious animals. Crowding larval solitarious locusts led to rapid changes in six chemicals towards gregarious values within the first 4 h (by which time gregarious behaviours are already being expressed), before returning to nearer long-term solitarious values 24 h later. Serotonin in the thoracic ganglia, however, did not follow this trend, but showed a ninefold increase after a 4 h period of crowding. After crowding solitarious nymphs for a whole larval stadium, the amounts of all chemicals, except octopamine, were similar to those of long-term gregarious locusts. Our data show that changes in levels of neuroactive substances are widespread in the central nervous system and reflect the time course of behavioural and physiological phase change.


Assuntos
Sistema Nervoso Central/metabolismo , Gafanhotos/crescimento & desenvolvimento , Neurotransmissores/metabolismo , Meio Social , Acetilcolina/metabolismo , Aminoácidos/metabolismo , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Aglomeração , Gafanhotos/metabolismo , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Isolamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...